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The Subgraph & Minor Isomorphism Problems

The Subgraph Isomorphism Problem (S.I.) and the Minor
Isomorphism Problem (M.I.) (also known as Minor Containment)
are two well-known NP-complete problems that accept as input two graphs
G and H and check whether G has any subgraph or minor isomorphic to H.

General Planar

S.I. ? 2O(k) · n
(Eppstein 1999)

M.I. g (k) · n3 O(2O(k) · n + n2 · log n)
(Robertson & Seymour 1995) (Adler et al. 2010)

where n = |V(G )| and k = |V(H )|.
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Planar and Plane Graphs

⋆ A planar graph is a graph that can be embedded on the plane such that
no two of its edges intersect, apart from any common endpoints.

⋆ A plane graph is a graph embedded on the plane, so that its vertices are
points and its edges are arcs. Each plane graph can be naturally associated
to a planar graph through isomorphism.

⋆ The plane graphs can be regarded as “drawings” or embeddings of the
planar graphs on the plane.

⋆ A planar graph can have infinitely many embeddings but only finite (at
most factorial) different up to topological isomorphism.
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Planar and Plane Graphs cont’d

For example:

G

Γ1 Γ2

Γ3

Here, G is a planar graph and Γ1, Γ2, and Γ3 are planar embeddings of G.
In fact, Γ1 and Γ2 are equivalent (topologically isomorphic) to each other
but not to Γ3.
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Completion Problems

Problem: Π Problem: Π-Completion
Input: Graphs G1, . . . ,Gl Input: Graphs G1, . . . ,Gl
Question: Do the graphs have a specified
property P ?

Question: Can we add some edges to one
or more of the graphs so that they will
have the property P ?

Many interesting problems, naturally parameterized by the number of new
edges (k), arose with the introduction of the completion operation, which
have been studied a lot lately.

...and now we are ready to define our two main problems.
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The Plane Subgraph Completion Problem

Plane Subgraph Completion (PSC)
Input: A “host” plane graph Γ and a “pattern” connected plane graph ∆.
Parameter: k = |V(∆)|
Question: Can we add edges to Γ so that it contains a subgraph
topologically isomorphic to ∆ while remaining planar?

Γ ∆
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The Plane Top. Minor Completion Problem

Plane Topological Minor Completion (PTMC)
Input: A “host” plane graph Γ and a “pattern” connected plane graph ∆.
Parameter: k = |V(∆)|
Question: Can we add edges to Γ so that it contains a topological minor
topologically isomorphic to ∆ while remaining planar?

Γ ∆
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Our Results

If k := |V(∆)| and n := |V(Γ)|, we give:

an FPT algorithm for PSC that runs in time 2O(k log k) · n2 and

an FPT algorithm for PTMC that runs in time g (k) · n2.

Remark. In fact we can even solve more general problems: we can ask that
the pattern graph ∆ be given as a planar graph and check whether any of
its embeddings can be found in the host.
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First, let’s see the tools we need for the PSC-algorithm...
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Subdivided Radial Enhancement
A subdivided radial enhancement of a plane graph Γ is a plane
multigraph RΓ, that can be constructed from Γ by subdividing each edge
of the graph once and then adding a vertex inside each face and
connecting it with all the vertices of the face, so that in the resulting graph
embedding each face with at least one original edge is a triangle.
Example:

Γ RΓ ∈ R(Γ)

From now on we will call this construction just enhancement.
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Some Observations

Let’s consider some facts about this construction.

If Γ is disconnected, then the enhancement is connected but it can
be done in (exponentially) many ways.
If Γ is connected, then the enhancement is uniquely defined (and in
fact 2-connected).
If Γ is 2-connected, then the enhancement is 3-connected.

Whitney’s Theorem (1932): Any 3-connected planar graph admits a unique
embedding on the plane (up to topological isomorphism).
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The PSC-Algorithm

Input:

Γ ∆
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The PSC-Algorithm

Step 1: Guess which edges of ∆ (red) are missing from Γ. This is much
easier than guessing which edges should be added to Γ.

O(2k) time

Γ ∆
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The PSC-Algorithm

Step 2: Guess a supergraph ∆∗ of ∆ with extra (blue) vertices and edges
in some faces that represent vertices and edges of Γ inside the
corresponding faces. Then remove the red edges.

O(2k log k) time

Γ ∆∗
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The PSC-Algorithm
Step 3: Enhance Γ arbitrarily and “guess” an enhancement of ∆∗, resulting
in RΓ and R∆∗ respectively.

O(n + 2k) time

RΓ R∆∗
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The PSC-Algorithm

Step 4: Enhance twice more both of the graphs. This is to ensure that
both of the resulting graphs Q(Γ) and Q(∆) are 3-connected and
therefore, due to Whitney’s theorem, uniquely embeddable.

O(n + k) time

Step 5: Pick a vertex u of Γ and contract everything in Q(Γ) that is at a
distance greater than diam(Q(∆)) = O(k) from u. It is easy to prove that
the resulting graph Qu(Γ) has treewidth ≤ 3 · diam(Q(∆)) = O(k).

O(n) time
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The PSC-Algorithm
Step 6: Use a modified algorithm by Adler et al. (2011) to check whether the
planar graph Qu(Γ) contains the planar graph Q(∆) as a minor. This is
easy since both of the graphs have now size O(k). If the algorithm
answered “NO”, go back to step 5 and pick a different vertex.

≤ n steps

σ

σ

RΓ R∆∗
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More tools are needed for the PTMC-algorithm...

Dimitris Chatzidimitriou (UoA) Plane Subgraph & Minor Completion Thursday, June 18, 2015 20 / 31



Cylindrical Enhancement
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Cylindrical Enhancement
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Cylindrical Enhancement
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Cylindrical Enhancement

The resulting graph Γc has O(n) vertices.

We have proved that ∆ is a completion-topological-minor of Γ iff ∆ is
a special-topological-minor of Γc, where the vertices of ∆ are
associated only to original vertices of Γ.
This special relation (≤∗) can be expressed in MSOL to find a top.
minor that is isomorphic (not topologically isomorphic) to ∆.
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Rooted Disjoint Paths

To prove the previous claim, we use a result by Adler et al. (2011) which
states that the number of edges that need to be added in each face in
order to find k disjoint paths is bounded by f (k).

Using this result, we can solve the Planar Rooted Topological
Minor Completion Problem even for disconnected patterns and
therefore the Planar Disjoint Paths Completion Problem.
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The Irrelevant-Edge Algorithm

We combine two known algorithms in order to find an irrelevant edge in
the graph (i.e., an edge whose removal results in an equivalent instance) in
time g (k) · n :

by Golovach,Kamiński,Maniatis,Thilikos (2015), we find a large wall with
some special properties in the graph and

by Kaminski,Thilikos (2012), we find an irrelevant edge in the wall.
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The PSC-Algorithm

Step 1: Cylindrically enhance Γ into Γc.
O(n) time

Step 2: If tw(Γc) ≤ f (k), proceed to step 3. Otherwise, find an irrelevant
edge in Γc and remove it. Repeat this step until the treewidth of the
resulting graph Γc− is ≤ f (k).

≤ g(k) · n2 time

Step 3: Enhance twice Γc− and ∆, resulting in Γ̃ and ∆̃.
O(n) time

Step 4: Use Courcelle’s algorithm to check whether ∆̃ ≤∗ Γ̃.
≤ h(k) · n time
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Side-Results / Future work

We can modify the PSC-algorithm to check if the pattern graph
appears as induced subgraph in the host.

Although the PTMC-algorithm works for minors as is, we can
modify it slightly to obtain a linear algorithm (w.r.t. n).

Try to drop the super-exponential factor 2O(k log k) of PSC to just
exponential. A better way to “guess” the blue parts in the pattern will
be needed.
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Thank you!
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